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Abstract—This letter addresses the integration of a 24-GHz in-
verted-F antenna on a low resistivity silicon substrate, using micro-
machining post-processing techniques compatible with commer-
cial Si/SiGe active device processes. By suspending the radiator
on a 2.4 mm2 large polymer membrane an on-chip antenna with

0.7 dBi gain has been realized.

Index Terms—Antennas, micromachining, silicon.

I. INTRODUCTION

FULLY integrated 24-GHz systems manufactured in com-
mercial silicon-germanium (SiGe) bipolar processes, such

as an integrated receiver, have been demonstrated [1]. By mono-
lithically integrating an antenna on chip with such a system, a
small, self contained RF module is obtained, which could find
applications in short range radar and communication devices op-
erating in the 24-GHz ISM band. Absence of high frequency in-
terconnects and simplified packaging could lead to cost savings.
However, in order to achieve the goal of low cost, it is important
that the on-chip antenna does not significantly increase the total
chip size.

The inverted F antenna (IFA) is a compact antenna type orig-
inally proposed for low profile missile antennas [2] which has
seen extensive use in mobile communications [3] and has been
modified for planar printed circuit board (PCB) implementation
in several applications.

Integrated inverted F antennas with good performance have
been reported for modified silicon substrates at frequencies
up to 20 GHz using proton implantation or silicon-on-quartz
[4]. However, such techniques typically require process modi-
fications not available in commercial silicon bipolar and HBT
processes. By contrast, low temperature budget bulk micro-
machining, where selected regions of the lossy substrate is
removed, has proved to be a feasible way of post-processing
pre-fabricated active device wafers [5].

In this work, we combine the small size of an inverted F an-
tenna with the low losses provided by localized micromachining
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Fig. 1. (a) Top view and (b) cross section of inverted F antenna on micro-
machined substrate with DRIE (solid line) or KOH (dotted line) etched
membrane. Principal E- and H-plane indicated.

of the substrate in proximity of the radiator to obtain a compact
on chip antenna, compatible with the commonly used low resis-
tivity silicon wafers.

II. DESIGN AND SIMULATION

The designed antenna is shown in Fig. 1. The radiator is sup-
ported on a 10- m-thick membrane of low loss ( 2.65,

0.002) benzocyclobutene (BCB) dielectric [6]. The thin
BCB membrane on top of the micromachined substrate provides
the radiator with a low effective dielectric constant.

The dimensions of the inverted F section are 300 m,
2500 m and 580 m, thus corresponding to a

total radiator length of 3080 m which is similar to a quarter
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wavelength in free space. As in the case of the inverted-L an-
tenna [7] a larger distance increases the radiation resistance,
and thus yields larger bandwidth of the antenna, but also in-
creases the required chip area.

The micromachined membrane is 2600 m wide,
900 m long and centered around the F-section of the

antenna in order to minimize the dielectric losses of the low
resistivity silicon substrate in the region of high electric fields
close to the radiator.

The ground-plane has a typical size ( 2200 m,
2600 m) of a square shaped integrated receiver or

transmitter circuit incorporating grounded parts such as ground
and power planes. In the simulation it was determined that
the majority of the current flows close to the edges, thus not
mandating the use of a solid ground-plane.

The distance between the feed point and the shorting
post determines the input impedance at resonance and can
thus be selected to provide a suitable value for an active inte-
grated RF-frontend. For characterization purposes a 50- input
impedance was selected, requiring a distance 280 m
between the probe pad and the post. The correct distance was
determined by simulation with HFSS [8] using a localized
voltage source at the input terminal. The antenna feed consists
of a 450 m long and 90 m wide conductor
which is terminated in a short CPW transmission line, which
serves as a probe pad for the ground-signal-ground (GSG)
coplanar wafer probe used for the measurements.

The simulated directivity of the antenna at 24.1 GHz is
2.1 dBi with a gain of 0.3 dBi, corresponding to a predicted
efficiency of 56% with substrate and metal losses included in
the simulation. The principal - and -planes of the antenna
are indicated in Fig. 1, but due to the asymmetric design of
antenna the obtained polarization purity is low.

III. MANUFACTURING

The antennas were manufactured on 400- m-thick silicon
wafers with 11–15 bulk resistivity. The wafers were spin-
coated with a 10- m-thick layer of BCB polymer which was
cured at a temperature of 250 C under nitrogen flow. The an-
tenna metallization was deposited on top of the dielectric layer
by gold electroplating to a total thickness of 3 m.

The membranes were released by localized backside etching
of the wafer using deep ion reactive etch (DRIE), providing
straight walls of the silicon trench as depicted in Fig. 1. A 10- m
-thick photoresist mask was used on the back side of the wafer
in order to define the membrane areas.

An additional batch of antennas was processed using potas-
sium hydroxide (KOH) wet chemical etching, yielding slanted
walls along the crystal planes of the silicon as indicated by
dotted lines in Fig. 1. Silicon nitride, deposited by plasma en-
hanced chemical vapor deposition (PECVD), was used as mask
for the KOH micromachining.

The processed wafers were diced into individual antenna
chips of 3.8 3.8 mm size before electrical characterization
to prevent substrate coupling to nearby elements on the wafer.
No membrane failures have been observed in the preparation or
handling of the processed antenna chips.

Fig. 2. Measured and simulated return loss for DRIE and KOH etched
antennas.

Fig. 3. Measured (DRIE etched solid line, KOH etched dashed) and simulated
(dotted line) 20–30 GHz input impedance.

IV. MEASUREMENTS AND RESULTS

The return loss of the on-chip antenna was measured using
a wafer probe station which has been modified to prevent re-
flections from the metallic parts [9]. The antenna under test was
mounted on top of a 9-mm-thick styrofoam sheet with 1. A
microwave absorber was placed beneath the foam sheet to sup-
press reflections from the metal base plate of the probe station.

The simulated and measured antenna return loss for the de-
signed antennas is plotted in Fig. 2.

The measured return loss agrees with the simulated one with
a resonance frequency of 24 GHz and a 10 dB bandwidth of
2 GHz. The larger bandwidth in the measurement can be ex-
plained by losses not properly modeled in the simulation and
additional radiation losses due to the presence of a wafer probe
close to the antenna. Despite the larger amount of silicon re-
moved by the KOH etching method compared to the DRIE one
no significant increase in resonance frequency was seen.

The measured input impedance is shown in Fig. 3 together
with simulated results obtained with HFSS. The impedance
locus does not pass through the 50- point as the original de-
sign and feed point selection did not include the effects of chip
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Fig. 4. Simulated and measured co- and cross-polariztion (a) E- and (b) H-
plane radiation patterns. 0 in each plane corresponds to the top side of the
wafer.

dicing. No differences in antenna impedance were obtained for
the DRIE and KOH etched antennas, thus indicating similar
radiation and loss resistance.

The antenna radiation pattern was measured in a free space
environment with the antenna supported by a 9-mm thick foam
sheet. The electrical connection is provided by a wafer probe
which partially shadows the antenna in the -plane. The setup
was calibrated for gain measurements using a 20 dBi standard
gain horn in place of the antenna under test.

The principal - and -plane measured radiation patterns for
the DRIE etched antenna are shown in Fig. 4 along with the
simulated patterns. A maximum gain of 0.7 dBi was measured

at 24.1 GHz. The negative gain, which shows agreement with
simulations, is likely caused by dielectric and conductor losses
in combination with the low directivity of the antenna.

The -plane pattern exhibits typical dipole characteristics
with nulls at 90 and 90 and maximums in the broadside di-
rections. Good agreement with the simulated results is obtained
outside the 0–100 range of angles blocked by the probe setup.
The -plane displays an omnidirectional pattern, closely fol-
lowing the simulated pattern. The increase in cross-polarization
visible in both the -plane and -plane relative to simulations
is likely caused by interaction with the wafer probe, which is
positioned in close proximity to the current maximum at the
shorting post of the radiator.

V. CONCLUSION

A micromachined 24-GHz inverted F antenna, with the radi-
ator suspended on a 2.4-mm large micromachined membrane,
has been demonstrated on a 15-mm large, low resistivity
silicon chip. Due to the use of low temperature post micro-
machining techniques the demonstrated antenna is suitable for
on-chip integration with transceiver circuits manufactured in
commercial SiGe HBT and BiCMOS processes. Deep reactive
ion etching and KOH wet etching methods for the release of
the BCB membrane have been compared with no influence on
antenna impedance or tuning seen, despite the different silicon
etching profiles obtained. The implemented antenna provides
2-GHz bandwidth at 24 GHz, and a maximum measured gain
of 0.7 dBi.
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